Senin, 28 Februari 2011

Media Komunikasi Data

Fungsi Komunikasi Data

Pengertian Komunikasi data berhubungan erat dengan pengiriman data menggunakan sistem transmisi elektronik satu terminal komputer ke terminal komputer lain. Data yang dimaksud disini adalah sinyal-sinyal elektromagnetik yang dibangkitkan oleh sumber data yang dapat ditangkap dan dikirimkan ke terminal-terminal penerima. Yang dimaksud terminal adalah peralatan untuk terminal suatu data seperti disk drive, printer, monitor, papan ketik, scanner, plotter dan lain sebagainya.


Mengapa diperlukan suatu teknik komunikasi data antar komputer satu dengan komputer atau terminal yang lain. Salah satunya adalah sebagai berikut :

1. Adanya distributed processing , ini mutlak diperlukan jaringan sebagai sarana pertukaran data.
2. Transaksi sering terjadi pada suatu lokasi yang berbeda dengan lokasi pengolahan datanya atau lokasi di mana data tersebut akan digunakan, sehingga data perlu dikirim ke lokasi pengolahan data dan dikirim lagi ke lokasi yang membutuhkan informasi dari data tersebut.
3. Biasanya lebih efisien atau lebih murah mengirim data lewat jalur komunikasi, lebih-lebih bila data telah diorganisasikan melalui komputer, dibandingkan dengan cara pengiriman biasa.
4. Suatu organisasi yang mempunyai beberapa lokasi pengolahan data, data dari suatu lokasi pengolahan yang sibuk dapat membagi tugasnya dengan mengirimkan data ke lokasi pengolahan lain yang kurang atau tidak sibuk.

Jaringan komputer mulai berkembang di awal tahun 1980 sebagai media komunikasi komunikasi yang berkembang pesat. Sehingga sampai saat ini komputer menjadi sarana komunikasi yang sangat efektif dan hampir seluruh bentuk informasi melibatkan komputer dalam penggunaannya.

Dengan ditemukannya internet, berbagai informasi bisa diakses dari rumah dengan biaya yang murah. Komunikasi data sebenarnya merupakan gabungan dua teknik yang sama sekali jauh berbeda yaitu pengolahan data dan telekomunikasi. Dapat diartikan bahwa komunikasi data memberikan layanan komunikasi jarauk juah dengan sistem komputer.



MODEL KOMUNIKASI

Dalam proses komunikasi data dari satu lokasi ke lokasi yang lain, harus ada minimal 3 unsur utama sistem yaitu sumber data, media transmisi dan penerima. Andaikan salah satu unsur tidak ada, maka komunikasi tidak dapat dilakukan. Secara garis besar proses komunikasi data digambarkan berikut ini :


Sumber Data.

Pengertian sumber data adalah unsur yang bertugas untuk mengirimkan informasi, misalkan terminal komputer, Sumber data ini membangkitkan berita atau informasi dan menempatkannya pada media transmisi. Sumber pada umumnya dilengkapi dengan transmitter yang berfungsi untuk mengubah informasi yang akan dikirimkan menjadi bentuk yang sesuai dengan media transmisi yang digunakan, antara lain pulsa listrik, gelombang elektromagnetik, pulsa digital. Contoh dari transmisi adalah modem yaitu perangkat yang bertugas untuk membangkitkan digital bitstream dari PC sebagai sumber data mejadi analog yang dapat dikirimkan melalui jaringan telepon biasa menuju ke tujuan.

Media Transmisi

Media transmisi data merupakan jalur dimana proses pengiriman data daari satu sumber ke penerima data. Beberapa media transmisi data yang dapat digunakan jalur transmisi atau carrier dari data yang dikirimkan, dapat berupa kabel, gelombang elektromagnetik, dan lain-lain. Dalam hal ini berfungsi sebagai jalur informasi untuk sampai pada tujuannya.

Ada beberapa hal yang berhubungan dengan transmisi data yaitu kapasitas dan tipe channel transmisi, kode transmisi, mode transmisi, protokol yang digunakan dan penggunaan kesalahan transmisi.

Beberapa media transmisi yang digunaka antara lain: twisted pair, kabel coaxial, serat optik dan gelombang elektromagnetik.



Penerima Data


Pengertian penerima data adalah alat yang menerima data atau informasi, misalkan pesawat telepon, terninal komputer, dan lain-lain. Berfungsi mnerima data yang dikirimkan oleh suatu sumber informasi. Perima merupakan suata alat yang disebut receiver yang fungsinya untuk menerima sinyal dari sistem transmisi dan menggabungkannya ke dalam bentuk tertentu yang dapat ditangkap dan digunakan oleh penerima. Sebagai contoh modem yang berfungsi sebagai receiver yang menerima sinyal analog yang dikirim melalui kabel telepon dan mengubahnya menjadi suatu bit stream agar dapat ditangkap oleh komputer penerima.

Untuk mempermudah pengertian, komunikasi dapat dijelaskan dengan suatu model komunikasi yang sederhana, seperti pada gambar 4.2. Kegunaan dasar dari sistem komunikasi ini adalah menjalankan pertukaran data antara 2 pihak. Pada gambar diberikan contoh, yaitu komunikasi antara sebuah workstation dan sebuah server yang dihubungkan sengan sebuah jaringan telepon. Contoh lainnya bisa berupa pertukaran sinyal-sinyal suara antara 2 telepon pada satu jaringan yang sama.


Berikut ini penjelasan dari contoh komunikasi data tersebut

1.Source (Sumber). Peralatan ini membangkitkan data sehingga dapat ditransmisikan. Misalkan telepon dan PC (Personal Computer)
2.Transmiter (Pengirim). Biasanya data yang dibangkitkan dari sistem sumber tidak ditransmisikan secara langsung dalam bentuk aslinya. Sebuah transmisi cukup memindah dan menandai informasi dengan cara yang sama seperti menghasilkan sinyal-sinyal elektromagnetik yang dapat ditransmisikan melewati beberapa sistem transmisi berurutan. Sebagai contoh, sebuah modem tugasnya menyalurkan suatu digital bit stream dari suatu alat yang sebelumnya sudah dipersiapkan misalnya PC, dan menstransformasikan bit stream tersebut menjadi suatu sinyal analog yang dapat ditransmisikan melalui jaringan telepon.

1.Sistem Transmisi. Berupa jalur transmisi tunggal atau jaringan kompleks yang menghubungkan antara sumber dengan tujuan.
2.Receiver (Penerima). Receiver menerima sinyal dari sistem transmisi dan menggabungkannya ke dalam bentuk tertentu yang dapat ditangkap oleh tujuan. Sebagai contoh, sebuah modem akan menerima suatu sinyal analog yang datang dari jaringan atau jalur transmisi dan mengubahnya menjadi suatu digital bit stream.
3.Destination (Tujuan). Menangkap data yang dihasilkan okeh receiver.



BENTUK-BENTUK KOMUNIKASI DATA


Suatu sistem komunikasi data dapat berbentuk offline communication system (sistem komunikasi offline) atau online communication system (sistem komunikasi online). Sistem komunikasi data dapat dimulai dengan sistem yang sederhana, seperti misalnya jaringan akses terminal, yaitu jaringan yang memungkinkan seorang operator mendapatkan akses ke fasilitas yang tersedia dalam jaringan tersebut. Operator bisa mengakses komputer guna memperoleh fasilitas, misalnya menjalankan program aplikasi, mengakses database, dan melakukan komunikasi dengan operator lain. Dalam lingkungan ideal, semua fasilitas ini harus tampak seakan-akan dalam terminalnya, walaupun sesungguhnya secara fisik berada pada lokasi yang terpisah.


Sistem Komunikasi Off line

Sistem komunikasi Offline adalah suatu sistem pengiriman data melalui fasilitas telekomunikasi dari satu lokasi ke pusat pengolahan data, tetapi data yang dikirim tidak langsung diproses oleh CPU (Central Processing Unit). Seperti pada Gambar 4.3, di mana data yang akan diproses dibaca oleh terminal, kemudian dengan menggunakan modem, data tersebut dikirim melalui telekomunikasi. Di tempat tujuan data diterima juga oleh modem, kemudian oleh terminal, data disimpan ke alamat perekam seperti pada disket, magnetic tape, dan lain-lain. Dari alat perekam data ini, nantinya dapat diproses oleh komputer.

Peralatan-peralatan yang diperlukan dalam sistem komunikasi offline, antara lain :

1. Terminal

Terminal adalah suatu I/O device yang digunakan untuk mengirim data dan menerima data jarak jauh dengan menggunakan fasilitas telekomunikasi. Peralatan terminal ini bermacam-macam, seperti magnetic tape unit, disk drive, paper tape, dan lain-lain.

2. Jalur komunikasi

Jalur komunikasi adalah fasilitas telekomunikasi yang sering digunakan, seperti : telepon, telegraf, telex, dan dapat juga dengan fasilitas lainnya.

3. Modem

Model adalah singkatan dari Modulator / Demodulator. Suatu alat yang mengalihkan data dari sistem kode digital ke dalam sistem kode analog dan sebaliknya.

Sistem Komunikasi On line.

Pada sistem komunikasi On line ini, data yang dikirim melalui terminal komputer bisa langsung diperoleh, langsung diproses oleh komputer pada saat kita membutuhkan.

Sistem Komunikasi On line ini dapat berupa:

*Realtime system
*Batch Processing system
*Time sharing system
*Distributed data processing system


Realtime system


Suatu realtime system memungkinkan untuk mengirimkan data ke pusat komputer, diproses di pusat komputer seketika pada saat data diterima dan kemudia mengirimkan kembali hasil pengolahan ke pengirim data saat itu juga. American Airlines merupakan perusahaan yang pertama kali mempelopori sistem ini. Dengan realtime system ini, penumpang pesawat terbang dari suatu bandara atau agen tertentu dapat memesan tiket untuk suatu penerbangan tertentu dan mendapatkan hasilnya kurang dari 15 detik, hanya sekedar untuk mengetahui apakah masih ada tempat duduk di pesawat atau tidak.

Sistem realtime ini juga memungkinkan penghapusan waktu yang diperlukan untuk pengumpulan data dan distribusi data. Dalam hal ini berlaku komunikasi dua arah, yaitu pengiriman dan penerimaan respon dari pusat komputer dalam waktu yang relatif cepat.

Pada realtime system, merupakan komunikasi data dengan kecepatan tinggi. Kebutuhan informasi harus dapat dipenuhi pada saat yang sama atau dalam waktu seketika itu juga. Pada sistem ini proses dilakukan dalam hitungan beberapa detik saja, sehingga diperlukan jalur komunikasi yang cepat, sistem pengolahan yang cepat serta sistem memori dan penampungan atau buffer yang sangat besar.

Penggunaan sistem ini memerlukan suatu teknik dalam hal sistem disain, dan pemrograman, hal ini disebabkan karena pada pusat komputer dibutuhkan suatu bank data atau database yang siap untuk setiap kebutuhan. Biasanya peralatan yang digunakan sebagai database adalah magnetic disk storage, karena dapat mengolah secara direct access (akses langsung), dan perlu diketahui bahwa pada sistem ini menggunakan kemampuan multiprogramming, untuk melayani berbagai macam keperluan dalam satu waktu yang sama.


Time sharing system


Time sharing system adalah suatu teknik penggunaan online system oleh beberapa pemakai secara bergantian menurut waktu yang diperlukan pemakai (gambar 4.5). Disebabkan waktu perkembangan proses CPU semakin cepat, sedangkan alat Input/Output tidak dapat mengimbangi kecepatan dari CPU, maka kecepatan dari CPU dapat digunakan secara efisien dengan melayani beberapa alat I/O secara bergantian. Christopher Strachy pada tahun 1959 telah memberikan ide mengenai pembagian waktu yang dilakukan oleh CPU. Baru pada tahun 1961, pertama kali sistem yang benar-benar berbentuk time sharing system dilakukan di MIT (Massachusetts Institute of Technology) dan diberi nama CTSS (Compatible Time Sharing System) yang bisa melayani sebanyak 8 pemakai dengan menggunakan komputer IBM 7090.

Salah satu penggunaan time sharing system ini dapat dilihat dalam pemakaian suatu teller terminal pada suatu bank. Bilamana seorang nasabah datang ke bank tersebut untuk menyimpan uang atau mengambil uang, maka buku tabungannya ditempatkan pada terminal. Dan oleh operator pada terminal tersebut dicatat melalui papan ketik (keyboard), kemudian data tersebut dikirim secara langsung ke pusat komputer, memprosesnya, menghitung jumlah uang seperti yang dikehendaki, dan mencetaknya pada buku tabungan tersebut untuk transaksi yang baru saja dilakukan.


Distributed data processing system


Distributed data processing (DDP) system merupakan bentuk yang sering digunakan sekarang sebagai perkembangan dari time sharing system. Bila beberapa sistem komputer yang bebas tersebar yang masing-masing dapat memproses data sendiri dan dihubungkan dengan jaringan telekomunikasi, maka istilah time sharing sudah tidak tepat lagi. DDP system dapat didefinisikan sebagai suatu sistem komputer interaktif yang terpencar secara geografis dan dihubungkan dengan jalur telekomunikasi dan seitap komputer mampu memproses data secara mandiri dan mempunyai kemampuan berhubungan dengan komputer lain dalam suatu sistem.

Setiap lokasi menggunakan komputer yang lebih kecil dari komputer pusat dan mempunyai simpanan luar sendiri serta dapat melakukan pengolahan data sendiri. Pekerjaan yang terlalu besar yang tidak dapat dioleh di tempat sendiri, dapat diambil dari komputer pusat.


JARINGAN KOMUNIKASI DATA


Jaringan Komunikasi data atau Jaringan Komputer merupakan sekumpulan komputer yang saling terhubung satu sama lain menggunakan protokol dan media transmisi tertentu. Berdasarkan luas area cakupan yang dicapai jaringan komputer dapat diklasifikan menjadi : Local Area Network (LAN) dan Wide area Network (WAN). Luas cakupan LAN lebih kecil dari WAN biasanya terdiri dari sekelompok gedung yang saling berdekatan.


TOPOLOGI JARINGAN

Topologi jaringan merupakan suatu cara untuk menghubungkan komputer atau terminal-terminal dalam suatu jaringan. Model dari topologi jaringan yang ada antara lain: Star, Loop, ring dan Bus.


Topologi Star

Pada topologi ini LAN terdiri dari sebuah cntral node yang berfungsi sebagai pengatur arus informasi dan penanggung jawa komunikasi dalam suatu jaringan. Jadi jika node yang satu ingin berkomunikasi dengan node yang lain maka harus melalui sentral node. Fungsi central node disini sangat penting, biasanya dalam sistem ini harus mempunyai kehandalan yang tinggi.



Topologi Bus

Pada topologi bus ini, node yang satu dengan node yang lain dihubungkan dengan jalur data atau bus. Semua node memiliki status yang sama antara satu dengan yang lainnya.

Topologi Loop
Topologi Loop ini menghubungkan antar node secara serial dalam bentuk suatu lingkaran tertutup. Semua node memiliki status yang sama.

Pada topologi loop ini, setiap node dapat melakukan tugas untuk operasi yang berbeda-beda. Topologi ini memiliki kelemahan, jika salah satu node rusak maka akan dapt menyebabkan gangguan komunikasi antar node satu dengan yang lainnya.


Topologi Ring
Topologi ring atau topologi cincin ini merupakan topologi hasil penggabungan antara topologi loop dengan topologi bus. Keuntungannya adalah bahwa jika salah satu node rusak, maka tidak akan mengganggu jalannya komunikasi antar node karena node yang rusak tersebtu diletakkan terpisah dari jalur data.


PROTOKOL

Protokol dipergunakan untuk proses komunikasi data dari sistem-sistem yang berbeda-beda. Protokol merupakan sekumpulan aturan yang mendefinisikan beberapa fungsi seperti pembuatan hubungan, proses transfer suatu file, serta memecahkan berbagai masalah khusus yang berhubungan dengan komunikasi data antara alat-alat komunikasi tersebut supaya komunikasi dapat berjalan dan dilakukan dengan benar.

Beberapa hal yang berhubungan dengan tugas-tugas protokol antara lain:

1.Mengaktifkan jalur komunikasi data langsung, serta sistem sumber harus menginformasikan identitas sistem tujuan yang diinginkan kepada jaringan komunikasi.
2.Sistem sumber harus dapat memastikan bahwa sistem tujuan benar-benar telah siap untuk menerima data.
3.Aplikasi transfer file pada sistem sumber harus dapat memastikan bahwa program manajemen file pada sistem tujuan benar-benar dipersiapkan untuk menerima dan menyimpan file untuk beberapa user tertentu.
4.Bila format-format file yang dipergunakan pada kedua sistem tersebtu tidak kompatibel, maka salah satu satau sistem yang lain harus mamapu melakukan fungsi penerjemahan format.

Standarisasi Protokol
Beragamnya berbagai komponen dan perangkat komputer dalam suatu jaringan, membutuhkan suatu standard protokol yang dapt digunakan oleh beragam perangkat tersebut. Modedl OSI (Open Systems Interconnection) dikembangkan oleh ISO(International Organization for Standardization) sebagai model untuk arsitektur komunikasi komputer, serta sebagai kerangka kerja bagi pengembangan standard-standard protokol. Model OSI terdiri dari tujuh lapisan, yaitu :

*Application
*Presentation
*Session
*Transport
*Network
*Data Link
*Physical

Penjelasan dari ketujuh lapisan OSI diatas dijelaskan sebagai berikut :

1.Application Layer

Merupakan lapisan yang menyediakan akses ke lingkungan OSI bagi pengguna serta menyediakan layanan informasi terdistribusi.

2.Presentation Layer

Menyediakan keleluasaan terhadap proses aplikasi untuk bermacam-macam representasi data. Juga melakukan proses kompresi dan enkripsi data agar keamanan dapat lebih terjamin.

3.Session Layer

Menyediakan struktur kontrol untuk komunikasi diantara aplikasi-aplikasi; menentukan, menyusun, mengatur dan mengakhiri sesi koneksi diantara aplikasi-aplikasi yang sedang beroperasi.

4.Transport Layer

Menyediakan transfer data yang handal dan transparan diantara titik-titik ujung; menyediakan perbaikan end to end error dan flow control.

5.Network Layer

Melengkapi lapisan yang lebih tinggi dengan keleluasaan dari transmisi data dan teknologi-teknologi switching yang dipergunakan untuk menghubungkan sistem; bertugas menyusun, mempertahankan, serta mengakhiri koneksi.

6.Data Link Layer

Menyediakan transfer informasi yang reliabel melewati link fisik; mengirimi block (frame) dengan sinkronisasi yang diperlukan, kontrol error, dan flow control.

7.Physical Layer

Berkaitan dengan transmisi bit stream yang tidak terstruktur sepanjang media physical (physical medium); berhubungan dengan karakteristik prosedural, fungsi, elektris, dan mekanis untuk mengakses media fisikal.
Selengkapnya...

Media Tranmisi Data

Media transmisi adalah media yang menghubungkan antara pengirim dan penerima informasi (data), karena jarak yang jauh, maka data terlebih dahulu diubah menjadi kode/isyarat, dan isyarat inilah yang akan dimanipulasi dengan berbagai macam cara untuk diubah kembali menjadi data.



Kegunaan media transmisi

Media transmisi digunakan pada beberapa peralatan elektronika untuk menghubungkan antara pengirim dan penerima supaya dapat melakukan pertukaran data. Beberapa alat elektronika, seperti telepon, komputer, televisi, dan radio membutuhkan media transmisi untuk dapat menerima data. Seperti pada pesawat telepon, media transmisi yang digunakan untuk menghubungkan dua buah telepon adalah kabel. Setiap peralatan elektronika memiliki media transmisi yang berbeda-beda dalam pengiriman datanya.
[sunting] Karakteristik media transmisi

Karakteristik media transmisi ini bergantung pada:

* Jenis alat elektronika
* Data yang digunakan oleh alat elektronika tersebut
* Tingkat keefektifan dalam pengiriman data
* Ukuran data yang dikirimkan

Jenis media transmisi

Guided Transmission Media

Guided transmission media atau media transmisi terpandu merupakan jaringan yang menggunakan sistem kabel.


Twisted Pair Cable

Twisted pair cable atau kabel pasangan berpilin terdiri dari dua buah konduktor yang digabungkan dengan tujuan untuk mengurangi atau meniadakan interferensi lektromagnetik dari luar seperti radiasi elektromagnetik dari kabel Unshielded twisted-pair (UTP),dan crosstalk yang terjadi di antara kabel yang berdekatan. Ada dua macam Twisted Pair Cable, yaitu kabel STP dan UTP. Kabel STP (Shielded Twisted Pair) merupakan salah satu jenis kabel yang digunakan dalam jaringan komputer. Kabel ini berisi dua pasang kabel (empat kabel) yang setiap pasang dipilin. Kabel STP lebih tahan terhadap gangguan yang disebebkan posisi kabel yang tertekuk. Pada kabel STP attenuasi akan meningkat pada frekuensi tinggi sehingga menimbulkan crosstalk dan sinyal noise. Kabel UTP (Unshielded Twisted Pair) banyak digunakan dalam instalasi jaringan komputer. Kabel ini berisi empat pasang kabel yang tiap pasangnya dipilin (twisted). Kabel ini tidak dilengkapi dengan pelindung (unshilded). Kabel UTP mudah dipasang, ukurannya kecil, dan harganya lebih murah dibandingkan jenis media lainnya. Kabel UTP sangat rentan dengan efek interferensi elektris yang berasal dari media di sekelilingnya.


Coaxial Cable

Kabel koaksial adalah suatu jenis kabel yang menggunakan dua buah konduktor. Kabel ini banyak digunakan untuk mentransmisikan sinyal frekuensi tinggi mulai 300 kHz keatas. Karena kemampuannya dalam menyalurkan frekuensi tinggi tersebut, maka sistem transmisi dengan menggunakan kabel koaksial memiliki kapasitas kanal yang cukup besar. Ada beberapa jenis kabel koaksial, yaitu thick coaxial cab le (mempunyai diameter besar) dan thin coaxial cable (mempunyai diameter lebih kecil). Keunggulan kabel koaksial adalah dapat digunakan untuk menyalurkan informasi sampai dengan 900 kanal telepon, dapat ditanam di dalam tanah sehingga biaya perawatan lebih rendah, karena menggunakan penutup isolasi maka kecil kemungkinan terjadi interferensi dengan sistem lain. Kelemahan kabel koaksial adalah mempunyai redaman yang relatif besar sehingga untuk hubungan jarak jauh harus dipasang repeater-repeater, jika kabel dipasang diatas tanah, rawan terhadap gangguan-gangguan fisik yang dapat berakibat putusnya hubungan. sebenarnya tidak ada yang berguna bagi anjing-anjing rumahan


Fiber Optic


Serat optik adalah saluran transmisi yang terbuat dari kaca atau plastik yang digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain. Berdasarkan mode transmisi yang digunakan serat optik terdiri atas Multimode Step Index, Multimode Graded Index, dan Singlemode Step Index. Keuntungan serat optik adalah lebih murah, bentuknya lebih ramping, kapasitas transmisi yang lebih besar, sedikit sinyal yang hilang, data diubah menjadi sinyal cahaya sehingga lebih cepat, tenaga yang dibutuhkan sedikit, dan tidak mudah terbakar. Kelemahan serat optik antara lain biaya yang mahal untuk peralatannya, memerlukan konversi data listrik ke cahaya dan sebaliknya yang rumit, memerlukan peralatan khusus dalam prosedur pemakaian dan pemasangannya, serta untuk perbaikan yang kompleks membutuhkan tenaga yang ahli di bidang ini. Selain merupakan keuntungan, sifatnya yang tidak menghantarkan listrik juga merupakan kelemahannya karena memerlukan alat pembangkit listrik eksternal.


Unguided Transmission Media

Unguided transmission media atau media transmisi tidak terpandu merupakan jaringan yang menggunakan sistem gelombang.


Gelombang mikro

Gelombang mikro (microwave) merupakan bentuk radio yang menggunakan frekuensi tinggi (dalam satuan gigahertz), yang meliputi kawasan UHF, SHF dan EHF. Gelombang mikro banyak digunakan pada sistem jaringan MAN, warnet dan penyedia layanan internet (ISP). Keuntungan menggunakan gelombang mikro adalah akuisisi antar menara tidak begitu dibutuhkan, dapat membawa jumlah data yang besar, biaya murah karena setiap tower antena tidak memerlukan lahan yang luas, frekuensi tinggi atau gelombang pendek karena hanya membutuhkan antena yang kecil. Kelemahan gelombang mikro adalah rentan terhadap cuaca seperti hujan dan mudah terpengaruh pesawat terbang yang melintas di atasnya.


Satelit

Satelit adalah media transmisi yang fungsi utamanya menerima sinyal dari stasiun bumi dan meneruskannya ke stasiun bumi lain. Satelit yang mengorbit pada ketinggian 36.000 km di atas bumi memiliki angular orbital velocity yang sama dengan orbital velocity bumi. Hal ini menyebabkan posisi satelit akan relatif stasioner terhadap bumi (geostationary), apabila satelit tersebut mengorbit di atas khatulistiwa. Pada prinsipnya, dengan menempatkan tiga buah satelit geostationary pada posisi yang tepat dapat menjangkau seluruh permukaan bumi. Keuntungan satelit adalah lebih murah dibandingkan dengan menggelar kabel antar benua, dapat menjangkau permukaan bumi yang luas, termasuk daerah terpencil dengan populasi rendah, meningkatnya trafik telekomunikasi antar benua membuat sistem satelit cukup menarik secara komersial. Kekurangannya adalah keterbatasan teknologi untuk penggunaan antena satelit dengan ukuran yang besar, biaya investasi dan asuransi satelit yang masih mahal, atmospheric losses yang besar untuk frekuensi di atas 30 GHz membatasi penggunaan frequency carrier.


Gelombang radio


Gelombang radio adalah media transmisi yang dapat digunakan untuk mengirimkan suara ataupun data. Kelebihan transmisi gelombang radio adalah dapat mengirimkan isyarat dengan posisi sembarang (tidak harus lurus) dan dimungkinkan dalam keadaan bergerak. Frekuensi yang digunakan antara 3 KHz sampai 300 GHz. Gelombang radio digunakan pada band VHF dan UHF : 30 MHz sampai 1 GHz termasuk radio FM dan UHF dan VHF televisi. Untuk komunikasi data digital digunakan packet radio.


Inframerah

Inframerah biasa digunakan untuk komunikasi jarak dekat, dengan kecepatan 4 Mbps. Dalam penggunaannya untuk pengendalian jarak jauh, misalnya remote control pada televisi serta alat elektronik lainnya. Keuntungan inframerah adalah kebal terhadap interferensi radio dan elekromagnetik, inframerah mudah dibuat dan murah, instalasi mudah, mudah dipindah-pindah, keamanan lebih tinggi daripada gelombang radio. Kelemahan inframerah adalah jarak terbatas, tidak dapat menembus dinding, harus ada lintasan lurus dari pengirim dan penerima, tidak dapat digunakan di luar ruangan karena akan terganggu oleh cahaya matahari.



Bluetooth


adalah spesifikasi industri untuk jaringan kawasan pribadi (personal area networks atau PAN) tanpa kabel. Bluetooth menghubungkan dan dapat dipakai untuk melakukan tukar-menukar informasi di antara peralatan-peralatan. Spesifiksi dari peralatan Bluetooth ini dikembangkan dan didistribusikan oleh kelompok Bluetooth Special Interest Group. Bluetooth beroperasi dalam pita frekuensi 2,4 Ghz dengan menggunakan sebuah frequency hopping traceiver yang mampu menyediakan layanan komunikasi data dan suara secara real time antara host-host bluetooth dengan jarak terbatas.Kelemahan teknologi ini adalah jangkauannya yang pendek dan kemampuan transfer data yang rendah.


Wi-Fi

merupakan kependekan dari Wireless Fidelity, yang memiliki pengertian yaitu sekumpulan standar yang digunakan untuk Jaringan Lokal Nirkabel (Wireless Local Area Networks - WLAN) yang didasari pada spesifikasi IEEE 802.11. Standar terbaru dari spesifikasi 802.11a atau b, seperti 802.16 g, saat ini sedang dalam penyusunan, spesifikasi terbaru tersebut menawarkan banyak peningkatan mulai dari luas cakupan yang lebih jauh hingga kecepatan transfernya.

Awalnya Wi-Fi ditujukan untuk penggunaan perangkat nirkabel dan Jaringan Area Lokal (LAN), namun saat ini lebih banyak digunakan untuk mengakses internet. Hal ini memungkinan seseorang dengan komputer dengan kartu nirkabel (wireless card) atau personal digital assistant (PDA) untuk terhubung dengan internet dengan menggunakan titik akses (atau dikenal dengan hotspot) terdekat.

Selengkapnya...

Jumat, 25 Februari 2011

Kerajaan DNS di Dunia

Asia-Pacific Network Information Centre



Asia Pacific Network Information Centre (APNIC) adalah Regional Internet Registry untuk kawasan Asia Pasifik.
APNIC menyediakan jumlah alokasi sumber daya dan layanan registrasi yang mendukung operasi global Internet. Ini adalah bukan untuk mencari keuntungan, organisasi berbasis keanggotaan yang anggotanya termasuk Internet Service Provider, Internet Registries Nasional, dan organisasi serupa.



APNIC fungsi utama adalah:

* Mengalokasikan IPv4 dan IPv6 address space, dan Autonomous System Numbers
* Memelihara Database Whois publik untuk wilayah Asia Pasifik
* Reverse DNS delegasi
* Mewakili kepentingan komunitas internet Asia Pasifik di panggung global


Pertemuan Kebijakan Terbuka

Setiap tahun, APNIC mengadakan dua pertemuan kebijakan terbuka. Ini memberikan kesempatan masyarakat untuk datang bersama-sama untuk pengembangan kebijakan, pengambilan keputusan, pendidikan, pertukaran informasi, dan jaringan - baik profesional dan sosial. Kebijakan Terbuka pertama setiap tahun Rapat diselenggarakan sebagai jejak konferensi Asia Pacific Regional Internet Conference on Operational Technologies (APRICOT), dan yang kedua adalah sebagai standalone diadakan pertemuan. Pertemuan diadakan di berbagai lokasi di seluruh Asia Pasifik dan sering melibatkan unsur-unsur budaya ekonomi negara tuan rumah.



Pelatihan APNIC

APNIC mengadakan beberapa kursus pelatihan di berbagai lokasi di seluruh wilayah. Kursus-kursus ini dirancang untuk mendidik peserta untuk mahir mengkonfigurasi, mengelola dan memberikan layanan internet mereka dan infrastruktur dan untuk menerima praktek-praktek terbaik saat ini.

Whois database

Database Whois APNIC detail dari registrasi berisi alamat IP dan nomor AS awalnya dialokasikan oleh APNIC. Ini menunjukkan organisasi-organisasi yang memegang sumber daya, di mana alokasi dibuat, dan rincian kontak untuk jaringan. Organisasi yang memegang sumber daya yang bertanggung jawab untuk memperbarui informasi mereka dalam database. Basis data dapat dicari dengan menggunakan antarmuka web pada situs APNIC, atau dengan mengarahkan klien whois Anda whois.apnic.net (misalnya, whois-h whois.apnic.net 203.37.255.97).

Sejarah

APNIC didirikan pada tahun 1992 oleh Asia Pasifik Koordinator Komite Penelitian Intercontinental Networks (APCCIRN) dan Asia Pacific Engineering and Planning Group (APEPG). Kedua kelompok itu kemudian digabung dan berganti nama menjadi Kelompok Jaringan Asia Pasifik (APNG). Ini didirikan sebagai sebuah proyek percontohan untuk memberikan ruang alamat seperti yang didefinisikan oleh RFC-1366, dan juga mencakup singkat yang lebih luas: "Untuk memfasilitasi komunikasi, bisnis, dan budaya dengan menggunakan teknologi internet".

Pada tahun 1993, APNG menemukan mereka tidak mampu menyediakan payung formal atau struktur hukum untuk APNIC, dan jadi pilot proyek ini menyimpulkan, tetapi APNIC terus eksis secara independen di bawah kekuasaan IANA sebagai 'proyek sementara'. Pada tahap ini, APNIC masih tidak memiliki hak-hak hukum, keanggotaan, dan struktur biaya.

Pada tahun 1995, pelantikan diadakan pertemuan APNIC di Bangkok. Ini adalah pertemuan dua hari, dijalankan oleh para relawan, dan bebas untuk hadir. Sumbangan sukarela dicari sesuai dengan ukuran organisasi, mulai dari $ 1.500 untuk 'kecil', melalui ke $ 10.000 untuk 'besar'. Tiga anggota jenis didefinisikan oleh APNIC-001: ISP (lokal IR), Enterprise, dan Nasional.

1996 melihat struktur biaya yang layak diperkenalkan, pembentukan keanggotaan, dan penyelenggaraan pertemuan APRICOT pertama.

1997 Pada saat tiba, itu menjadi semakin jelas bahwa APNIC lingkungan setempat di Jepang membatasi pertumbuhan - misalnya, staf terbatas pada anggota 4-5. Oleh karena itu, perusahaan konsultan KPMG dikontrak untuk menemukan lokasi yang ideal di kawasan Asia Pasifik untuk APNIC markas baru.

Untuk alasan-alasan seperti infrastruktur stabil, rendahnya biaya hidup dan operasi, dan keuntungan pajak bagi organisasi keanggotaan, Brisbane, Australia dipilih sebagai lokasi baru, dan relokasi selesai antara bulan April dan Agustus, 1998, sambil tetap menjaga seluruh operasi terus-menerus.

Pada tahun 1999, relokasi itu selesai, krisis ekonomi Asia berakhir, maka mulai periode konsolidasi untuk APNIC - masa pertumbuhan berkelanjutan, pengembangan kebijakan, dan penciptaan dokumentasi dan sistem internal.

Sejak itu, APNIC telah terus tumbuh dari awal yang sederhana ke anggota lebih dari 1.500 di 56 ekonomi di seluruh wilayah dan sekretariat dari sekitar 50 anggota staf yang terletak di kantor pusat di Brisbane, Australia.


Proses pengembangan kebijakan

Kebijakan-kebijakan APNIC dikembangkan oleh keanggotaan dan lebih luas komunitas internet. Media besar untuk pengembangan kebijakan adalah face-to-face Pertemuan Kebijakan Terbuka, yang diadakan dua kali setiap tahun, dan milis diskusi.

Pengembangan kebijakan APNIC prosesnya adalah:

* Buka
* Siapa saja dapat mengusulkan kebijakan.
* Setiap orang dapat membicarakan proposal kebijakan.
* Transparan
* APNIC dokumen publik semua diskusi kebijakan dan keputusan.
* Bottom-up
* drive komunitas pengembangan kebijakan.

Dokumen APNIC semua diskusi kebijakan dan keputusan untuk memberikan transparansi lengkap dari proses pengembangan kebijakan.

APNIC mewakili kawasan Asia Pasifik, yang terdiri dari 56 ekonomi:

* Afghanistan
* Samoa Amerika (US)
* Australia
* Bangladesh
* Bhutan
* British Indian Ocean Territory (UK)
* Brunei Darussalam
* Kamboja
* People's Republic of China
* Christmas Island (AU)
* Kepulauan Cocos (Keeling) Kepulauan (AU)
* Kepulauan Cook (N.Z.)
* Timor Timur
* Fiji
* Polinesia Perancis (Perancis)
* Wilayah Prancis Selatan (Perancis)
* Guam (US)
* Hong Kong (RRC)
* India
* Indonesia
* Jepang
* Kiribati
* Korea Utara
* Korea Selatan
* Laos
* Makau (RRC)
* Malaysia
* Maladewa
* Kepulauan Marshall
* Mikronesia
* Mongolia
* Myanmar (Burma)
* Nauru
* Nepal
* Kaledonia Baru (Perancis)
* Selandia Baru
* Niue (N.Z.)
* Pulau Norfolk (AU)
* Kepulauan Mariana Utara (US)
* Pakistan
* Palau
* Papua Nugini
* Filipina
* Pitcairn (Inggris)
* Samoa
* Singapura
* Solomon
* Sri Lanka
* Taiwan
* Thailand
* Tokelau (N.Z.)
* Tonga
* Tuvalu
* Vanuatu
* Vietnam
* Kepulauan Wallis dan Futuna (Perancis)
APNIC tertutup Madagaskar, Mauritius dan Seychelles sampai AfriNIC terbentuk.



American Registry for Internet Numbers



American Registry untuk Internet Numbers (ARIN) adalah Regional Internet Registry (RIR) untuk Kanada, Karibia dan banyak pulau-pulau Atlantik Utara, dan Amerika Serikat. ARIN mengelola nomor Internet distribusi sumber daya, termasuk IPv4 dan IPv6 ruang dan nomor AS. ARIN membuka pintunya untuk bisnis di 22 Desember 1997after menggabungkan pada tanggal 18 April 1997. ARIN adalah sebuah lembaga nirlaba di negara bagian Virginia, negara bagian AS. Hal ini bermarkas di wilayah tak berhubungan Fairfax County, Virginia, Washington Dulles International Airport dan dekat Chantilly.


ARIN adalah salah satu dari lima Regional Internet Registry (RIR) di dunia. Seperti RIR lainnya, ARIN:

* Memberikan layanan yang berkaitan dengan koordinasi teknis dan manajemen sumber daya nomor Internet
* Memfasilitasi pengembangan kebijakan oleh para anggota dan stakeholder
* Berpartisipasi dalam komunitas internet internasional
* Apakah nirlaba, organisasi berbasis masyarakat
* Apakah diperintah oleh dewan eksekutif dipilih oleh keanggotaannya


Sejarah

Organisasi ini dibentuk pada Desember 1997 untuk "menyediakan layanan registrasi IP sebagai independen, lembaga nirlaba." Sampai saat ini IP pendaftaran di wilayah ARIN dilakukan oleh suatu departemen dalam perusahaan Network Solutions, yang menyediakan staf awal dan infrastruktur komputer untuk ARIN.

Presiden pertama ARIN Kim Hubbard, dari tahun 1997 sampai tahun 2000. Kim digantikan oleh Raymond "Ray" Plzak sampai akhir 2008. Trustee John Curran adalah pejabat Presiden sampai 1 Juli tahun 2009 ketika ia mengambil peran CEO secara permanen. Ray Plzak tetap sebagai konsultan untuk organisasi.

Sampai akhir tahun 2002 itu disajikan Meksiko, Amerika Tengah, Amerika Selatan dan seluruh Karibia. LACNIC sekarang menangani bagian dari Karibia, Meksiko, Amerika Tengah, dan Amerika Selatan. Juga, Sub-Sahara Afrika merupakan bagian dari wilayahnya sampai April 2005, ketika AfriNIC secara resmi diakui oleh ICANN sebagai kelima Regional Internet Registry.


Layanan

ARIN menyediakan layanan yang berkaitan dengan koordinasi teknis dan manajemen sumber daya nomor Internet. Sifat layanan ini dijelaskan dalam pernyataan misi ARIN:

Menerapkan prinsip-prinsip pelayanan, ARIN, sebuah lembaga nirlaba, mengalokasikan sumber daya Protokol Internet; mengembangkan kebijakan berbasis konsensus dan memfasilitasi kemajuan Internet melalui informasi dan pendidikan penjangkauan.


Layanan ini dikelompokkan dalam tiga bidang: Pendaftaran, Organisasi, dan Kebijakan Pembangunan.

Pendaftaran Layanan

Pendaftaran Layanan berkaitan dengan koordinasi teknis dan pengelolaan inventarisasi sumber daya nomor Internet. Layanan meliputi:

* Alokasi alamat IPv4 dan penugasan
* Alamat IPv6 alokasi dan penugasan
* Nomor AS penugasan
* Direktori layanan termasuk:
o Registrasi informasi transaksi (WHOIS)
o Routing informasi (Internet Routing Registry)
* DNS (Reverse)

Untuk informasi tentang nomor internet meminta sumber daya dari ARIN, lihat https://www.arin.net/sumber daya/index.html. Bagian ini meliputi permintaan template, kebijakan distribusi khusus, dan panduan untuk meminta dan mengelola sumber daya nomor internet.

Organisasi Pelayanan

Layanan organisasi berkaitan dengan interaksi antara para stakeholder, ARIN anggota, dan ARIN. Layanan meliputi:

* Pemilihan
* Anggota rapat
* Informasi publikasi dan penyebarluasan
* Pendidikan dan pelatihan


Kebijakan Pengembangan Jasa

Jasa Pengembangan kebijakan memfasilitasi pengembangan kebijakan untuk koordinasi teknis dan manajemen sumber daya nomor Internet.

Semua kebijakan ARIN diatur oleh masyarakat. Setiap orang didorong untuk berpartisipasi dalam proses pengembangan kebijakan di pertemuan kebijakan publik dan pada Kebijakan Publik Mailing List (ppml@arin.net). The ARIN Dewan Pengawas kebijakan meratifikasi hanya setelah:

1. diskusi di milis, dan pada saat rapat;
2. Dewan Pertimbangan ARIN rekomendasi;
3. konsensus masyarakat yang mendukung kebijakan dan
4. hukum penuh dan fiskal review.

Masyarakat mengembangkan kebijakan dengan mengikuti Proses Pengembangan Kebijakan formal seperti diuraikan di https://www.arin.net/kebijakan/pdp.html. Kebijakan The Number Resource Manual, ARIN set lengkap kebijakan saat ini, tersedia di https:// www.arin.net/kebijakan/nrpm.html.

Keanggotaan tidak diperlukan untuk berpartisipasi dalam pengembangan kebijakan ARIN proses atau menerapkan sumber daya nomor Internet.

Layanan meliputi:

* Mempertahankan diskusi daftar e-mail
* Melakukan pertemuan kebijakan publik
* Penerbitan dokumen kebijakan

Struktur Organisasi

ARIN terdiri dari komunitas internet di dalam wilayah, para anggotanya, 7-anggota Dewan Pengawas, 15-anggota Dewan Penasehat, dan staf profesional di bawah 50. Dewan Pengawas dan Dewan Penasehat dipilih oleh anggota ARIN selama tiga tahun.

Dewan Pengawas

Keanggotaan yang ARIN memilih Dewan Pengawas (BOT), yang memiliki tanggung jawab utama untuk urusan bisnis dan keuangan ARIN kesehatan, dan mengelola operasi ARIN dengan cara yang sesuai dengan petunjuk yang diterima dari Dewan Pertimbangan dan tujuan yang ditetapkan oleh anggota registri . Bot bertanggung jawab untuk menentukan disposisi dari semua pendapatan yang diterima untuk memastikan semua layanan yang disediakan dalam cara yang adil. Bot meratifikasi proposal yang dihasilkan dari keanggotaan dan dikirimkan melalui Dewan Penasehat. Keputusan eksekutif dilaksanakan setelah disetujui oleh BOT.

BOT terdiri dari 7 anggota:

* Scott Bradner (Bendahara)
* John Curran (Presiden dan CEO)
* Timotius Denton
* Lee Howard (Sekretaris)
* Paul Vixie (Ketua)
* Bill Woodcock
* Vacant Position

Dewan Penasehat

Di samping BOT, ARIN memiliki Dewan Pertimbangan yang memberikan nasihat ARIN dan alokasi IP BOT pada kebijakan dan hal-hal terkait. Mengikuti prosedur di Internet Resource Proses Evaluasi Kebijakan, Dewan Penasehat depan kebijakan berbasis konsensus proposal kepada BOT untuk diratifikasi.

Dewan Penasehat terdiri dari 15 anggota yang dipilih:

* Dan Alexander
* Paul Andersen
* Cathy Aronson
* Marla Azinger
* Leo Bicknell
* Marc Crandall
* Bill Darte
* Owen DeLong
* David Farmer
* Stacy Hughes
* Scott Leibrand
* Lea Roberts
* Robert Seastrom
* Heather Schiller
* John buah apel manis (Ketua)

Negara-negara di wilayah layanan ARIN adalah:

* Anguilla
* Antarctica
* Antigua and Barbuda
* Bahamas
* Barbados
* Bermuda
* Bouvet Island (Norway)
* Canada
* Cayman Islands (UK)
* Dominica
* Grenada
* Guadeloupe (France)
* Heard and McDonald Islands (Australia)
* Jamaica
* Martinique (France)
* Montserrat
* Puerto Rico (U.S.)
* Saint Kitts and Nevis
* Saint Lucia
* Saint Vincent and the Grenadines
* St. Helena (UK)
* St. Pierre and Miquelon (France)
* Turks and Caicos Islands
* United States
* United States Minor Outlying Islands
* British Virgin Islands (UK)
* U.S. Virgin Islands (U.S.)


Latin American and Caribbean Internet Addresses Registry

Amerika Latin dan Karibia Internet Addresses Registry (LACNIC) adalah Regional Internet Registry untuk Amerika Latin dan Karibia daerah.




LACNIC nomor menyediakan alokasi sumber daya dan layanan registrasi yang mendukung operasi global Internet. Ini adalah bukan untuk mencari keuntungan, organisasi berbasis keanggotaan yang anggotanya termasuk Internet Service Provider, dan organisasi serupa.

LACNIC fungsi utama adalah:

* Mengalokasikan IPv4 dan IPv6 address space, dan Autonomous System Numbers
* Memelihara Database Whois publik untuk Amerika Latin dan Karibia
* Reverse DNS delegasi
* Mewakili kepentingan Amerika Latin dan Karibia komunitas internet di panggung global

Sejarah

Sejak tahun 1993, organisasi-organisasi akademis di Amerika Latin seperti ENRED - Foro de redes de America Latina kamu El Caribe, mendiskusikan kebutuhan register untuk Amerika Latin. Pada tahun 1998 selama pertemuan di Panamá ENRED termasuk NIC-MX, tema ini sedang dibahas dan mereka mengetahui bahwa kelompok lain yang dibentuk oleh organisasi komersial seperti CABASE - Camara Argentina de Base de Datos y Servicio em Línea dan e-COMLAC (Amerika Latin dan Karibia Federasi untuk Internet dan Electronic Commerce), juga mendiskusikan gagasan tentang american latin registri.

Pada tanggal 30 Januari 1998, Ira Magazincr, maka penasihat senior Presiden Clinton untuk pengembangan kebijakan, merilis sebuah makalah diskusi, yang dikenal sebagai "kertas hijau". Sebuah versi revisi yang dikenal sebagai "kertas putih" dirilis pada tanggal 5 Juni. Makalah ini mengusulkan sebuah organisasi baru untuk menangani sumber daya internet. (yang terlambat menjadi ICANN). Setelah rilis ini sejumlah kelompok, konferensi yang diselenggarakan untuk membahas proposal dan membuat saran, di antara mereka, IFWP atau International Forum untuk White Paper.

IFWP diselenggarakan empat pertemuan, yang terakhir di Buenos Aires, di mana beberapa orang Amerika selatan orang dan organisasi dibedakan berpartisipasi dan mulai mengenal satu sama lain. Di antara mereka Messano Oscar, Anthony Harris dan Edmundo Valiente dari CABASE, Fabio Marinho, anggota Comite Gestor de Brasil - Brasil internet Steering Committee dan Presiden ASSESPRO - Associação Brasileira de Empresas de Software Serviços de Informática e Internet, Raimundo Beca-AHCIET - Asosiasi Hispanoamericana de Centros de Investigacion y Empresas de telecomunicaciones, Brasil, México Nic-Oscar Robles dan Jerman Valdez, y Julian Dunayevich, Raul Echeverria. ENRED

Bergabung dengan organisasi-organisasi eCOMLAC - Federación Latino Americana y Caribeña para Internet y el Comercio electrónico, argumented bahwa alamat IP Amerika Latin, dapat ditangani oleh suatu badan lokal dan mencapai kesepakatan untuk penciptaan. Orang lain berpartisipasi dalam diskusi awal ini, di antara Eliezer CADENAS (ENRED), Fidel Vienegas (AHCIET), Raphael Mandarino (CG_B).

Akhirnya kesepakatan untuk penciptaan LACNIC (Amerika Latin dan Karibia IP Address Daerah Registry), ditandatangani di Santiago de Chile pada 22 Agustus 1999 selama pertemuan ICANN yang kedua.

Sebuah Dewan Interim didefinisikan dengan enam anggota:

* AHCIET - Raimundo Beca;
* CABASE - Jorge Plano, kemudian digantikan oleh Oscar Messano;
* CG-Br - José Luis Ribeiro;
* ENRED - Julian Dunayerich; kemudian digantikan oleh Raul Echeverria;
* NIC-Mx - Jerman Valdez;
* ECOMLAC - Fabio Marinho;

Langkah berikutnya, LACNIC ini disampaikan Dewan Sementara pada 26 Agustus 1999, perjanjian ini untuk Esther Dyson, maka Ketua Interim ICANN ICANN Board untuk persetujuan.
Sebuah Rencana Bisnis atau organisasi baru ini dikembangkan dan disajikan kepada ARIN, organisasi yang bertanggung jawab untuk wilayah kami. Anggaran Dasar diciptakan dan diputuskan bahwa akan LACNIC kantor pusat di Montevideo, dengan orang-orang teknis dan peralatan di São Paulo, Brazil NIC di tempat.
LACNIC secara resmi diakui oleh ICANN selama pertemuan Shanghai pada tahun 2002.
LACNIC didirikan pada 2001, dengan kantor administrasi di Montevideo, Uruguay dan fasilitas teknis yang disediakan oleh Comite Gestor da Internet Brasil São Paulo.

The LACNIC terdiri dari:

* Anggota
Anggota dapat langsung mempengaruhi kegiatan LACNIC dan jasa. Anggota bertanggung jawab untuk pencalonan dan pemilihan kandidat dalam Badan Eksekutif LACNIC dan untuk menerima skema pengisian LANIC dan menyetujui LACNIC Laporan Keuangan setiap tahun. Anggota juga memberikan masukan kepada, dan umpan balik, kegiatan yang dilakukan dan layanan yang diberikan oleh LACNIC.
* Executive Board
* LACNIC mencalonkan dan memilih anggota Badan Eksekutif. Dewan terdiri dari enam anggota dan bertanggung jawab untuk menunjuk Directo Eksekutif LACNIC dan untuk situasi keuangan secara keseluruhan LACNIC.
* LACNIC Staf
* Anggota staf melakukan kegiatan LACNIC, memberikan layanan kepada anggotanya dan memberikan dukungan administrasi bagi LACNIC.

Organisasi yang menerima alamat IP dari LACNIC secara otomatis langsung menjadi anggota. Menurut ukuran ruang alamat setiap organisasi mengelola, ada anggota yang berbeda kategori dan tingkatan. Keanggotaan terbuka untuk setiap orang atau organisasi yang berminat; ini berarti bahwa organisasi-organisasi yang tidak langsung menerima alamat IP dari LACNIC juga dapat mengajukan aplikasi keanggotaan.

Hal ini tidak perlu menjadi anggota LACNIC sebelum mengajukan permohonan untuk ruang alamat IP (atau sumber daya lainnya), juga tidak akan berbuat demikian memudahkan untuk mendapatkan mereka.

LACNIC perjanjian kerjasama

Sejak pembentukannya, LACNIC telah mengadopsi kebijakan kerjasama yang aktif berusaha untuk mengkonsolidasikan dirinya sebagai sebuah organisasi, untuk memperkuat keterlibatan dalam pertumbuhan dan pengembangan Internet di wilayah, dan untuk memenuhi tujuan utamanya manajemen sumber daya Internet untuk wilayah Latin Amerika dan Karibia.

Contoh dari hal ini adalah perjanjian yang ditandatangani awal dengan melakukan Gestor Comite Internet NIC Brasil dan Meksiko. Melalui perjanjian pertama adalah mungkin untuk memiliki infrastruktur teknis dan sumber daya manusia yang diperlukan untuk LACNIC pusat operasional di kota São Paulo selama dua tahun pertama keberadaannya. Dalam kasus perjanjian dengan NIC Meksiko, sangat mungkin untuk mengimplementasikan rencana pelatihan LACNIC dengan mengorbankan kata organisasi, melalui bahan dan persiapan penyelenggaraan pertemuan di berbagai negara dari kawasan kita.

Kedua perjanjian memiliki peran yang sangat penting dalam pencapaian LACNIC stabilitas dan kelangsungan hidup selama tahap-tahap awal.

Demikian pula, kami percaya bahwa dengan menghasilkan berbagai kesepakatan kerjasama dan kegiatan LACNIC dapat membuat kontribusi yang signifikan bagi penguatan lembaga serta pertumbuhan dan perkembangan komunitas internet di kawasan ini.

LACNIC's partisipasi dalam setiap perjanjian adalah bervariasi dan tergantung pada kemampuan yang tersedia di masing-masing kasus, tetapi maksudnya adalah selalu untuk melengkapi sumber daya dan tindakan setiap organisasi. Untuk alasan ini, dalam beberapa kasus berpartisipasi dengan menggunakan dana sendiri atau memperoleh dana dari luar daerah, dalam orang lain dengan memfasilitasi pelembagaan organisasi regional, mengintegrasikan dan co-organisasi yang berpartisipasi dalam forum dan aktivitas lainnya serta mendukung penelitian pada isu-isu strategis.

Jadi, meskipun tidak peran utamanya, LACNIC memberikan kontribusi untuk pertumbuhan dan evolusi komunitas Internet regional, meningkatkan kehadiran internasionalnya dan relevansi, mengakibatkan tingkat keterlibatan yang lebih besar dan berpengaruh pada definisi kebijakan dan pengelolaan sumber daya global di jaringan tingkat internasional.

* NIC-BR - LACNIC Perjanjian
* NIC-MX - LACNIC Perjanjian
* CLARA - LACNIC Perjanjian Kerjasama
* ECOM-LAC - LACNIC Perjanjian Kerjasama
* LACTLD - LACNIC Perjanjian Kerjasama
* ICA-IDRC - LACNIC Agreement (Frida Program)
* ISC - LACNIC Perjanjian (Proyek + RAICES)
* ORT University - LACNIC Perjanjian
* Universitas Republik (Fakultas Teknik) - Perjanjian LACNIC
* Exchange Program dengan RIR lain
* Dukungan dan Partisipasi di Daerah Acara dan Forum lain

The Number Resource Organization

Dengan RIR lain, LACNIC adalah anggota dari Number Resource Organization (NRO), yang ada untuk melindungi sumber daya nomor belum dialokasikan renang, untuk mempromosikan dan melindungi bottom-up proses pengembangan kebijakan, dan menjadi titik fokus input ke dalam sistem RIR.



RIPE NCC



Réseaux IP Européens Pusat Koordinasi Jaringan (RIPE NCC) adalah Regional Internet Registry (RIR) untuk Eropa, Timur Tengah dan bagian-bagian dari Asia Tengah. Ini bermarkas di Amsterdam, Belanda.
Sebuah RIR mengawasi alokasi dan pendaftaran nomor Internet sumber daya (alamat IPv4, alamat IPv6 dan Autonomous System (AS) Bilangan) di wilayah tertentu.
RIPE NCC yang mendukung koordinasi teknis dan administratif infrastruktur Internet. Ini adalah tidak-untuk-keuntungan keanggotaan organisasi dengan lebih dari 6.000 (per Januari 2009) anggota yang terletak di lebih dari 70 negara di wilayah layanan.
Setiap individu atau organisasi yang dapat menjadi anggota RIPE NCC. Keanggotaan terdiri dari Internet Service Provider (ISP), telekomunikasi organisasi, lembaga pendidikan, pemerintah, regulator dan perusahaan besar.
RIPE NCC yang juga menyediakan dukungan teknis dan administratif untuk Réseaux IP Européens (RIPE), sebuah forum terbuka untuk semua pihak yang berkepentingan dengan pengembangan teknis Internet.

Sejarah

The RIPE NCC memulai operasinya pada April 1992 di Amsterdam, Belanda. Dana awal disediakan oleh jaringan akademis Réseaux Associés pour la Recherche Européenne (RARE) orang anggota, EARN dan EUnet. RIPE NCC yang resmi didirikan ketika versi Belanda Anggaran Dasar diendapkan dengan Amsterdam Chamber of Commerce pada tanggal 12 November 1997. RIPE NCC pertama Rencana Kegiatan diterbitkan pada Mei 1991.

Kegiatan

RIPE NCC yang mendukung perkembangan internet melalui koordinasi teknis infrastruktur Internet di wilayah layanan dan sekitarnya. Itu melakukan banyak kegiatan di daerah ini, termasuk:

* Alokasi dan pencatatan sumber daya nomor Internet (IP Addresses dan AS Bilangan)
* Pembangunan, pengoperasian dan pemeliharaan RIPE Database
* Pembangunan, pengoperasian dan pemeliharaan RIPE Routing Registry
* Operasi K-akar, salah satu akar dunia nameserver
* Koordinasi dukungan untuk delegasi ENUM
* Pengumpulan dan publikasi statistik pada Internet netral perkembangan dan kinerja

RIPE NCC yang terdiri dari:

* Anggota
Anggota dapat langsung mempengaruhi kegiatan RIPE NCC dan jasa. Anggota bertanggung jawab untuk pencalonan dan pemilihan kandidat dalam RIPE NCC Badan Eksekutif dan untuk menerima RIPE NCC Pengisian Skema dan RIPE NCC menyetujui Laporan Keuangan setiap tahun. Anggota juga memberikan masukan kepada, dan umpan balik, kegiatan yang dilakukan dan layanan yang diberikan oleh RIPE NCC.
* Executive Board
* RIPE NCC mencalonkan dan memilih anggota Badan Eksekutif. Dewan terdiri dari antara tiga dan lima anggota dan bertanggung jawab untuk menunjuk RIPE NCC Direktur Pelaksana, untuk situasi keuangan secara keseluruhan dari RIPE NCC dan untuk membuat catatan yang memungkinkan situasi keuangan organisasi yang akan dievaluasi setiap saat.
* RIPE NCC Staf
Anggota staf melakukan kegiatan RIPE NCC, memberikan layanan kepada anggotanya dan memberikan dukungan administrasi bagi RIPE.

RIPE NCC dan RIPE

Réseaux IP Européens adalah suatu forum terbuka untuk semua pihak yang berkepentingan dengan pengembangan teknis Internet. Meskipun nama mirip, RIPE dan RIPE NCC adalah entitas yang terpisah. Namun, mereka sangat saling tergantung. RIPE NCC yang memberikan dukungan administratif untuk RIPE, seperti Rapat RIPE fasilitasi dan memberikan dukungan administratif untuk RIPE Kelompok Kerja.

Biaya

Sumber daya nomor internet tidak memiliki nilai moneter. RIPE NCC para anggota pungutan biaya keanggotaan tahunan yang didasarkan pada sumber daya internet yang menerima anggota dari RIPE NCC. Biaya keanggotaan tahunan yang dikenakan kepada setiap anggota secara proporsional terkait dengan beban kerja yang terlibat dalam menyediakan sumber daya yang diminta oleh anggota.

The RIPE Database

The RIPE Database adalah database publik yang berisi rincian pendaftaran alamat IP dan AS Bilangan awalnya dialokasikan kepada anggota oleh RIPE NCC. Hal ini menunjukkan organisasi atau individu yang saat ini terus yang nomor internet sumber daya, ketika alokasi ini dibuat dan rincian kontak. Organisasi atau individu yang memegang sumber daya ini bertanggung jawab untuk memperbarui informasi dalam database.

Pada Maret 2008, isi database yang tersedia untuk mendekati real-time mirroring (NRTM).
RIPE Routing Registry

The RIPE Routing Registry (RR) adalah sub-set RIPE Database dan menyimpan informasi routing RPSL. RIPE RR yang merupakan bagian dari Internet RR, koleksi database yang cermin satu sama lain. Informasi tentang nama domain dalam RIPE Database adalah untuk referensi saja: itu bukan nama domain registry yang dijalankan oleh kode negara Top Level Domain (ccTLD) administrator dari Eropa dan daerah sekitarnya.

Daerah layanan

RIPE NCC di wilayah pelayanan terdiri dari negara-negara di Eropa, Timur Tengah dan bagian-bagian dari Asia Tengah. RIPE NCC layanan yang tersedia untuk pengguna di luar wilayah ini melalui Local Internet Registries; badan-badan tersebut harus memiliki alamat hukum yang berlaku di dalam wilayah layanan, tetapi dapat menawarkan jasa mereka kepada siapa pun (Daftar Negara-negara Anggota).

Asia

* Southwest Asia
* o Armenia
o Azerbaijan
o Bahrain
o Siprus
o Georgia
o Iran
o Irak
o israel
o Yordania
* o Lebanon
o Oman
o Otoritas Palestina
o Qatar
o Arab Saudi
o Suriah
o Turki
o Uni Emirat Arab
o Yaman
* Central Asia
o Kazakhstan
o Kyrgyzstan
o Tajikistan
o Turkmenistan
o Uzbekistan
* North Asia
o Rusia
Eropa
* Albania
* Andorra
* Austria
* Belarus
* Belgia
* Bosnia-Herzegovina
* Bulgaria
* Kroasia
* Republik Ceko
* Denmark
* Estonia
* Finlandia
* Perancis
* Jerman
* Gibraltar (Britania Raya)
* Yunani
* Hungaria
* Islandia
* Irlandia
* Italia
* Latvia
* Liechtenstein
* Lithuania
* Luxembourg
* Macedonia
* Malta
* Moldova
* Monako
* Montenegro
* Norwegia
* Belanda
* Polandia
* Portugal
* Romania
* Rusia
* San Marino
* Serbia
* Slovakia
* Slovenia
* Spanyol
* Swedia
* Swiss
* Turki
* Ukraina
* Inggris
* Vatikan
* Yugoslavia

Amerika Utara
* Greenland (denmark)

Mantan daerah layanan

Sebelum pembentukan AfriNIC, RIPE NCC melayani negara-negara berikut:

Africa

* Afrika Utara
o Aljazair
o Mesir
o Libya
o Mauritania
o Maroko
o Sudan
o Tunisia
o Sahara Barat
* Afrika Tengah
o Kamerun
o Republik Afrika Tengah
o Chad
o Guinea Khatulistiwa
o Gabon
o São Tomé dan Príncipe
* Afrika Timur
o Djibouti
o Eritrea
o Ethiopia
o Kenya
o Uganda
o Somalia
* Afrika Barat
o Benin
o Burkina Faso
o Tanjung Verde
o Pantai Gading
o Gambia
o Ghana
o Guinea
o Guinea-Bissau
o Liberia
o Mali
o Niger
o nigeria
o Senegal
o Sierra Leone
o Togo

Organisasi terkait dan kegiatan

* The Internet Corporation for Assigned Names and Numbers (ICANN)
ICANN menetapkan blok sumber daya Internet (IP Sumber dan AS Bilangan) ke RIPE NCC dan RIR lainnya.

* The Number Resource Organization (NRO)
The Number Resource Organization (NRO) terdiri dari lima RIR: AfriNIC, APNIC, ARIN, LACNIC, dan RIPE NCC. NRO melaksanakan kegiatan bersama RIR termasuk bersama proyek-proyek teknis, kegiatan penghubung dan koordinasi kebijakan.

* Organisasi Pendukung Alamat (ASO)
NRO juga melaksanakan fungsi ASO, salah satu organisasi pendukung diminta oleh peraturan ICANN. The ASO tinjauan dan mengembangkan rekomendasi tentang Kebijakan internet yang berkaitan dengan sistem IP yang menangani dan menyarankan ICANN Dewan tentang hal ini.

* World Summit di Masyarakat Informasi (WSIS)
Sebagai bagian dari NRO, yang RIPE NCC secara aktif terlibat dalam WSIS.

* Internet Governance Forum (IGF)
Sebagai bagian dari NRO, yang RIPE NCC secara aktif terlibat dalam IGF.



AfriNIC (African Network Information Center) adalah Regional Internet Registry (RIR) untuk Afrika.
AfriNIC, yang berkantor pusat di Ebene City, Mauritius, untuk sementara diakui oleh ICANN pada 11 Oktober 2004 dan menjadi fungsional operasional pada 22 Februari 2005. Itu diakui oleh ICANN pada bulan April 2005. Sebelumnya, alamat IP untuk Afrika didistribusikan oleh APNIC, ARIN, dan RIPE NCC.
AfriNIC telah dialokasikan alamat IPv4 blok 41.0.0.0 / 8, 196.0.0.0 / 8 dan 197.0.0.0 / 8 dan IPv6 blok 2c00:: / 12 dan 2001:4200:: / 23. Adiel AKPLOGAN, sebuah Togo Nasional, adalah CEO registri.

Negara-negara di wilayah layanan AfriNIC adalah :

* Aljazair
* Angola
* Benin
* Botswana
* Burkina Faso
* Burundi
* Republik Kongo
* Kamerun
* Cape Verde
* Republik Afrika Tengah
* Chad
* Komoro
* Republik Demokratik Kongo
* Pantai Gading
* Djibouti
* Mesir
* Equatorial Guinea
* Eritrea
* Ethiopia
* Gabon
* Gambia
* Ghana
* Guinea
* Guinea-Bissau
* Kenya
* Lesotho
* Liberia
* Libya
* Madagaskar
* Malawi
* Mali
* Mauritania
* Mauritius
* Mayotte
* Maroko
* Mozambik
* Namibia
* Niger
* Nigeria
* Reunion Island
* Rwanda
* Sao Tome dan Principe
* Senegal
* Seychelles
* Sierra Leone
* Somaliland
* South Africa
* Sudan
* Swaziland
* Tanzania
* Togo
* Tunisia
* Uganda
* Sahara Barat
* Zambia
* Zimbabwe


dikutip dari : http://theflydown.blogspot.com/2011/02/kerajaan-dns-di-dunia.html
Selengkapnya...

Senin, 21 Februari 2011

DNS (Domain Name Service)

Domain Name Service (DNS)

Untuk mengidentifikasi suatu entitas, internet menggunakan alamat IP, yang secara unik mengidentifikasi koneksi dari host ke Internet. Namun, orang lebih suka menggunakan nama daripada alamat numerik. Oleh karena itu, kita membutuhkan sebuah sistem yang dapat memetakan nama ke alamat atau alamat untuk nama. Ketika Internet kecil, pemetaan dilakukan menggunakan file host. File tuan rumah hanya memiliki dua kolom: satu untuk nama dan satu untuk alamat. Setiap host dapat menyimpan file host pada disk dan memperbaruinya secara berkala dari file host master. Ketika sebuah program atau pengguna ingin untuk memetakan nama ke alamat, host berkonsultasi dengan file host dan menemukan pemetaan.
Hari ini, adalah mustahil untuk memiliki satu file host setiap berhubungan satu nama, dan sebaliknya. File tuan rumah akan terlalu besar untuk menyimpan di setiap host. Selain itu, tidak mungkin untuk memperbarui semua file host di dunia setiap kali ada perubahan. Salah satu solusi adalah dengan menyimpan file seluruh host dalam satu komputer dan memungkinkan akses ke informasi yang tersentralisasi untuk setiap komputer yang membutuhkan pemetaan, tetapi kita tahu bahwa ini akan menciptakan sejumlah besar lalu lintas di Internet. Solusi lain, yang digunakan saat ini salah satu, adalah untuk membagi ini sejumlah besar informasi menjadi bagian-bagian yang lebih kecil dan menyimpan setiap bagian pada komputer yang berbeda. Dalam metode ini, host yang perlu pemetaan dapat menghubungi komputer terdekat memegang informasi yang dibutuhkan. Metode ini digunakan oleh Domain Name System (DNS).





Nama Ruang


Nama ditugaskan untuk mesin harus hati-hati dipilih dari ruang nama dengan kontrol penuh atas pengikatan antara nama dan alamat IP. Nama harus unik karena alamat yang unik. Sebuah ruang nama yang memetakan setiap alamat ke nama yang unik dapat diatur dalam dua cara: datar atau hirarkis.

Nama Ruang Flat

Dalam ruang nama datar, nama ditugaskan untuk alamat. Sebuah nama dalam ruang ini adalah urutan karakter tanpa struktur. Nama mungkin atau mungkin tidak memiliki bagian umum, jika mereka melakukannya, itu tidak ada artinya. Kelemahan utama dari ruang nama datar adalah bahwa hal itu tidak dapat digunakan dalam suatu sistem besar seperti internet karena harus terpusat dikontrol untuk menghindari ambiguitas dan duplikasi.



Ketika sebuah aplikasi (misalkan web broswer), hendak mencari alamat IP dari sebuah nama domain, aplikasi tersebut tidak harus mengikuti seluruh langkah yang disebutkan dalam teori diatas. Kita akan melihat dulu konsep caching, lalu mengertikan operasi DNS di "dunia nyata".


Caching dan masa hidup

Karena jumlah permintaan yang besar dari sistem seperti DNS, perancang DNS menginginkan penyediaan mekanisme yang bisa mengurangi beban dari masing-masing server DNS. Rencana mekanisnya menyarankan bahwa ketika sebuah DNS resolver (klien) menerima sebuah jawaban DNS, informasi tersebut akan di cache untuk jangka waktu tertentu. Sebuah nilai (yang di-set oleh administrator dari server DNS yang memberikan jawaban) menyebutnya sebagai time to live (masa hidup), atau TTL yang mendefinisikan periode tersebut. Saat jawaban masuk ke dalam cache, resolver akan mengacu kepada jawaban yang disimpan di cache tersebut; hanya ketika TTL usai (atau saat administrator mengosongkan jawaban dari memori resolver secara manual) maka resolver menghubungi server DNS untuk informasi yang sama.


Waktu propagasi

Satu akibat penting dari arsitektur tersebar dan cache adalah perubahan kepada suatu DNS tidak selalu efektif secara langsung dalam skala besar/global. Contoh berikut mungkin akan menjelaskannya: Jika seorang administrator telah mengatur TTL selama 6 jam untuk host www.wikipedia.org, kemudian mengganti alamat IP dari www.wikipedia.org pada pk 12:01, administrator harus mempertimbangkan bahwa ada (paling tidak) satu individu yang menyimpan cache jawaban dengan nilai lama pada pk 12:00 yang tidak akan menghubungi server DNS sampai dengan pk 18:00. Periode antara pk 12:00 dan pk 18:00 dalam contoh ini disebut sebagai waktu propagasi (propagation time), yang bisa didefiniskan sebagai periode waktu yang berawal antara saat terjadi perubahan dari data DNS, dan berakhir sesudah waktu maksimum yang telah ditentukan oleh TTL berlalu. Ini akan mengarahkan kepada pertimbangan logis yang penting ketika membuat perubahan kepada DNS: tidak semua akan melihat hal yang sama seperti yang Anda lihat. RFC1537 dapat membantu penjelasan ini.


DNS di dunia nyata


Di dunia nyata, user tidak berhadapan langsung dengan DNS resolver - mereka berhadapan dengan program seperti web brower (Mozilla Firefox, Safari, Opera, Internet Explorer, Netscape, Konqueror dan lain-lain dan klien mail (Outlook Express, Mozilla Thunderbird dan lain-lain). Ketika user melakukan aktivitas yang meminta pencarian DNS (umumnya, nyaris semua aktivitas yang menggunakan Internet), program tersebut mengirimkan permintaan ke DNS Resolver yang ada di dalam sistem operasi.

DNS resolver akan selalu memiliki cache (lihat diatas) yang memiliki isi pencarian terakhir. Jika cache dapat memberikan jawaban kepada permintaan DNS, resolver akan menggunakan nilai yang ada di dalam cache kepada program yang memerlukan. Kalau cache tidak memiliki jawabannya, resolver akan mengirimkan permintaan ke server DNS tertentu. Untuk kebanyakan pengguna di rumah, Internet Service Provider(ISP) yang menghubungkan komputer tersebut biasanya akan menyediakan server DNS: pengguna tersebut akan mendata alamat server secara manual atau menggunakan DHCP untuk melakukan pendataan tersebut. Jika administrator sistem telah mengkonfigurasi sistem untuk menggunakan server DNS mereka sendiri, DNS resolver umumnya akan mengacu ke server nama mereka. Server nama ini akan mengikuti proses yang disebutkan di Teori DNS, baik mereka menemukan jawabannya maupun tidak. Hasil pencarian akan diberikan kepada DNS resolver; diasumsikan telah ditemukan jawaban, resolver akan menyimpan hasilnya di cache untuk penggunaan berikutnya, dan memberikan hasilnya kepada software yang meminta pencarian DNS tersebut.

Sebagai bagian akhir dari kerumitan ini, beberapa aplikasi seperti web browser juga memiliki DNS cache mereka sendiri, tujuannya adalah untuk mengurangi penggunaan referensi DNS resolver, yang akan meningkatkan kesulitan untuk melakukan debug DNS, yang menimbulkan kerancuan data yang lebih akurat. Cache seperti ini umumnya memiliki masa yang singkat dalam hitungan 1 menit.



Penerapan DNS lainnya

Sistem yang dijabarkan diatas memberikan skenario yang disederhanakan. DNS meliputi beberapa fungsi lainnya:

* Nama host dan alamat IP tidak berarti terhubung secara satu-banding-satu. Banyak nama host yang diwakili melalui alamat IP tunggal: gabungan dengan pengasuhan maya (virtual hosting), hal ini memungkinkan satu komputer untuk malayani beberapa situs web. Selain itu, sebuah nama host dapat mewakili beberapa alamat IP: ini akan membantu toleransi kesalahan (fault tolerance dan penyebaran beban (load distribution), juga membantu suatu situs berpindah dari satu lokasi fisik ke lokasi fisik lainnya secara mudah.
* Ada cukup banyak kegunaan DNS selain menerjemahkan nama ke alamat IP. Contoh:, agen pemindahan surat Mail transfer agents(MTA) menggunakan DNS untuk mencari tujuan pengiriman E-mail untuk alamat tertentu. Domain yang menginformasikan pemetaan exchange disediakan melalui rekod MX (MX record) yang meningkatkan lapisan tambahan untuk toleransi kesalahan dan penyebaran beban selain dari fungsi pemetaan nama ke alamat IP.
* Kerangka Peraturan Pengiriman (Sender Policy Framework) secara kontroversi menggunakan keuntungan jenis rekod DNS, dikenal sebagai rekod TXT.
* Menyediakan keluwesan untuk kegagalan komputer, beberapa server DNS memberikan perlindungan untuk setiap domain. Tepatnya, tigabelas server akar (root servers) digunakan oleh seluruh dunia. Program DNS maupun sistem operasi memiliki alamat IP dari seluruh server ini. Amerika Serikat memiliki, secara angka, semua kecuali tiga dari server akar tersebut. Namun, dikarenakan banyak server akar menerapkan anycast, yang memungkinkan beberapa komputer yang berbeda dapat berbagi alamat IP yang sama untuk mengirimkan satu jenis services melalui area geografis yang luas, banyak server yang secara fisik (bukan sekedar angka) terletak di luar Amerika Serikat.

DNS menggunanakn TCP dan UDP di port komputer 53 untuk melayani permintaan DNS. Nyaris semua permintaan DNS berisi permintaan UDP tunggal dari klien yang dikuti oleh jawaban UDP tunggal dari server. Umumnya TCP ikut terlibat hanya ketika ukuran data jawaban melebihi 512 byte, atau untuk pertukaaran zona DNS zone transfer


Jenis-jenis catatan DNS

Beberapa kelompok penting dari data yang disimpan di dalam DNS adalah sebagai berikut:

* A record atau catatan alamat memetakan sebuah nama host ke alamat IP 32-bit (untuk IPv4).
* AAAA record atau catatan alamat IPv6 memetakan sebuah nama host ke alamat IP 128-bit (untuk IPv6).
* CNAME record atau catatan nama kanonik membuat alias untuk nama domain. Domain yang di-alias-kan memiliki seluruh subdomain dan rekod DNS seperti aslinya.
* [MX record]]' atau catatan pertukaran surat memetakan sebuah nama domain ke dalam daftar mail exchange server untuk domain tersebut.
* PTR record atau catatan penunjuk memetakan sebuah nama host ke nama kanonik untuk host tersebut. Pembuatan rekod PTR untuk sebuah nama host di dalam domain in-addr.arpa yang mewakili sebuah alamat IP menerapkan pencarian balik DNS (reverse DNS lookup) untuk alamat tersebut. Contohnya (saat penulisan / penerjemahan artikel ini), www.icann.net memiliki alamat IP 192.0.34.164, tetapi sebuah rekod PTR memetakan ,,164.34.0.192.in-addr.arpa ke nama kanoniknya: referrals.icann.org.
* NS record atau catatan server nama memetakan sebuah nama domain ke dalam satu daftar dari server DNS untuk domain tersebut. Pewakilan bergantung kepada rekod NS.
* SOA record atau catatan otoritas awal (Start of Authority) mengacu server DNS yang mengediakan otorisasi informasi tentang sebuah domain Internet.
* SRV record adalah catatan lokasi secara umum.
* Catatan TXT mengijinkan administrator untuk memasukan data acak ke dalam catatan DNS; catatan ini juga digunakan di spesifikasi Sender Policy Framework.

Jenis catatan lainnya semata-mata untuk penyediaan informasi (contohnya, catatan LOC memberikan letak lokasi fisik dari sebuah host, atau data ujicoba (misalkan, catatan WKS memberikan sebuah daftar dari server yang memberikan servis yang dikenal (well-known service) seperti HTTP atau POP3 untuk sebuah domain.



Nama domain yang diinternasionalkan

Nama domain harus menggunakan satu sub-kumpulan dari karakter ASCII, hal ini mencegah beberapa bahasa untuk menggunakan nama maupun kata lokal mereka. ICANN telah menyetujui Punycode yang berbasiskan sistem IDNA, yang memetakan string Unicode ke karakter set yang valid untuk DNS, sebagai bentuk penyelesaian untuk masalah ini, dan beberapa registries sudah mengadopsi metode IDNS ini.



Perangkat lunak DNS


Beberapa jenis perangakat lunak DNS menerapkan metode DNS, beberapa diantaranya:

* BIND (Berkeley Internet Name Domain)
* djbdns (Daniel J. Bernstein's DNS)
* MaraDNS
* QIP (Lucent Technologies)
* NSD (Name Server Daemon)
* PowerDNS
* Microsoft DNS (untuk edisi server dari Windows 2000 dan Windows 2003)

Utiliti berorientasi DNS termasuk:

* dig (the domain information groper)




Pengguna legal dari domain
Pendaftar (registrant)

Tidak satupun individu di dunia yang "memiliki" nama domain kecuali Network Information Centre (NIC), atau pendaftar nama domain (domain name registry). Sebagian besar dari NIC di dunia menerima biaya tahunan dari para pengguna legal dengan tujuan bagi si pengguna legal menggunakan nama domain tersebut. Jadi sejenis perjanjian sewa-menyewa terjadi, bergantung kepada syarat dan ketentuan pendaftar. Bergantung kepada beberpa peraturan penamaan dari para pendaftar, pengguna legal dikenal sebagai "pendaftar" (registrants) atau sebagai "pemegang domain" (domain holders)

ICANN memegang daftar lengkap untuk pendaftar domain di seluruh dunia. Siapapun dapat menemukan pengguna legal dari sebuah domain dengan mencari melalui basis data WHOIS yang disimpan oleh beberpa pendaftar domain.

Di (lebih kurang) 240 country code top-level domains (ccTLDs), pendaftar domain memegang sebuah acuan WHOIS (pendaftar dan nama server). Contohnya, IDNIC, NIC Indonesia, memegang informasi otorisatif WHOIS untuk nama domain .ID.

Namun, beberapa pendaftar domain, seperti VeriSign, menggunakan model pendaftar-pengguna. Untuk nama domain .COM dan .NET, pendaftar domain, VeriSign memegang informasi dasar WHOIS )pemegang domain dan server nama). Siapapun dapat mencari detil WHOIS (Pemegang domain, server nama, tanggal berlaku, dan lain sebagainya) melalui pendaftar.

Sejak sekitar 2001, kebanyakan pendaftar gTLD (.ORG, .BIZ, .INFO) telah mengadopsi metode penfatar "tebal", menyimpan otoritatif WHOIS di beberapa pendaftar dan bukan pendaftar itu saja.
[sunting] Kontak Administratif (Administrative Contact)

Satu pemegang domain biasanya menunjuk kontak administratif untuk menangani nama domain. Fungsi manajemen didelegasikan ke kontak administratif yang mencakup (diantaranya):

* keharusan untuk mengikuti syarat dari pendaftar domain dengan tujuan memiliki hak untuk menggunakan nama domain
* otorisasi untuk melakukan update ke alamat fisik, alamat email dan nomor telepon dan lain sebagainya via WHOIS


Kontak Teknis (Technical Contact)

Satu kontak teknis menangani server nama dari sebuah nama domain. Beberapa dari banyak fungsi kontak teknis termasuk:

* memastikan bahwa konfigurasi dari nama domain mengikuti syarat dari pendaftar domain
* update zona domain
* menyediakan fungsi 24x7 untuk ke server nama (yang membuat nama domain bisa diakses)


DNS DI INTERNET

DNS adalah protokol yang dapat digunakan di berbagai platform. Di Internet, nama domain ruang (pohon) dibagi menjadi tiga bagian yang berbeda: domain generik, domain negara, dan domain terbalik.

Generic Domain


Domain generik mendefinisikan host terdaftar sesuai dengan perilaku generik mereka. Setiap simpul di pohon mendefinisikan suatu domain, yang merupakan indeks untuk nama ruang database domain seperti di Gbr.6. Tingkat pertama di bagian domain generik memungkinkan tujuh label tiga-karakter yang menggambarkan jenis organisasi seperti terlihat pada tabel 1. Baru-baru ini beberapa tingkat pertama-label telah dietujui.


Country Domain


Negara bagian menggunakan domain-karakter negara singkatan dua (misalnya, iq untuk Irak).

Invers Domain
domain invers digunakan untuk memetakan sebuah alamat ke nama.


Pemetaan Nama untuk Alamat


Sebagian besar waktu, resolver memberikan nama domain ke server dan meminta alamat yang sesuai. Dalam hal ini, server memeriksa domain generik atau domain negara untuk menemukan pemetaan. Jika domain ini dari bagian domain generik, resolver menerima nama domain seperti tech.atc.edu, jika nama domain dari domain negara bagian, resolver menerima nama domain seperti tech.atc.iq.

Pemetaan Alamat untuk Nama

Seorang klien dapat mengirim alamat IP ke server untuk dapat dipetakan ke nama domain. Ini disebut pointer query (PTR) DNS. Di sini menggunakan domain terbalik.

DNS Pesan

DNS memiliki dua jenis pesan: query dan response. Kedua jenis memiliki format yang sama. Pesan query terdiri dari header dan catatan pertanyaan, tanggapan pesan terdiri dari header, catatan pertanyaan, jawaban catatan, catatan berwibawa, dan catatan tambahan.



Server Nama

Disebut sebagai server nama otoritatif yang mengasuh zona nama domain dari sebuah nama domain.

Nama hirarkis Space

Dalam ruang nama hirarki, setiap nama terdiri dari beberapa bagian. Bagian pertama dapat menentukan sifat organisasi, bagian kedua dapat menentukan nama, bagian ketiga dapat menentukan departemen, dan jadi tidak ada. Dalam hal ini, kewenangan untuk menetapkan dan mengontrol ruang nama dapat terdesentralisasi.

Sebuah otoritas pusat dapat menetapkan bagian dari nama yang mendefinisikan sifat organisasi dan nama. Tanggung jawab untuk sisa nama yang dapat diberikan kepada organisasi itu sendiri. Sufiks dapat ditambahkan ke nama host atau menentukan sumber daya. Manajemen organisasi tidak perlu khawatir bahwa awalan dipilih untuk host diambil oleh organisasi lain karena meskipun bagian dari alamat yang sama, alamat seluruh yang berbeda.

Sebagai contoh, asumsikan dua perguruan tinggi dan satu perusahaan panggilan penantang komputer mereka, perguruan tinggi pertama diberi nama oleh otoritas pusat seperti fhda.edu, perguruan tinggi kedua diberi nama berkeley.edu, dan perusahaan diberi smart.com. nama Ketika organisasi-organisasi ini menambahkan penantang nama ke nama yang mereka telah diberikan, hasil akhirnya adalah tiga nama dibedakan:, challenger.berkeley.edu, dan challenger.smart.com. challenger.fhda.edu yang pusat otoritas kontrol hanya bagian dari nama, bukan nama keseluruhan.

NAMA DOMAIN SPACE

Untuk memiliki ruang nama hirarkis, ruang nama domain dirancang. Dalam desain ini, nama didefinisikan dalam sebuah struktur terbalik-pohon dengan akar di atas. Pohon itu hanya dapat memiliki 128 tingkat: tingkat 0 (root) ke level 127. Sedangkan lem seluruh akar pohon bersama, setiap tingkat pohon mendefinisikan tingkat hirarkis (lihat Gambar. 1).

Label

Setiap simpul di pohon memiliki label, yang merupakan string dengan maksimum 63 karakter. Label root adalah string kosong (string kosong). DNS mensyaratkan bahwa anak-anak dari sebuah node (node yang cabang dari node yang sama) memiliki label yang berbeda, yang menjamin keunikan nama domain.

Nama Domain


Setiap simpul di pohon memiliki nama domain. Sebuah nama domain lengkap adalah urutan dari label yang dipisahkan oleh titik (.). Nama domain selalu dibaca dari node sampai akarnya. Label terakhir adalah label dari akar (null). Ini berarti bahwa nama domain lengkap selalu berakhir dengan label null, yang berarti karakter terakhir merupakan titik nol karena string apa-apa. Gbr.2 menunjukkan beberapa nama domain.


FQDN

Fully Qualifed Domain Name (disingkat menjadi FQDN), dalam sistem penamaan domain Domain Name System (DNS) merujuk kepada nama bertitik yang dapat mengidentifikasikan sebuah host Transmission Control Protocol/Internet Protocol (TCP/IP) di dalam jaringan dan Internet. FQDN juga sering disebut sebagai Absolute Domain Name. FQDN didiskusikan dalam RFC 1035, RFC 1123 dan RFC 2181.

Sebuah FQDN dari sebuah host mengandung nama host miliknya digabungkan dengan nama domain (dan subdomain) di mana host tersebut berada, yang kemudian dipisahkan dengan menggunakan tanda titik (.). FQDN umumnya digunakan di dalam Uniform Resource Locator (URL) yang digunakan untuk mengakses halaman web di dalam jaringan dan Internet dan membuat path absolut terhadap ruang nama (namespace) DNS ke host target di mana halaman web tersebut berada. FQDN berbeda dengan nama domain biasa karena FQDN merupakan nama absolut dari domain, sehingga sufiks domain tidak perlu ditambahkan.

Contoh FQDN: untuk sebuah nama FQDN id.wikipedia.org, dapat diambil pernyataan bahwa id merupakan nama host, dan wikipedia.org merupakan nama domain-nya. Panjang maksimum dari FQDN adalah 255 bita.

PQDN

Ada juga beberapa situasi di mana kita dapat merujuk ke perangkat yang menggunakan spesifikasi nama lengkap. Hal ini disebut memenuhi syarat nama domain-sebagian (PQDN) yang berarti bahwa nama itu hanya sebagian menentukan lokasi perangkat. Menurut definisi, PQDN adalah ambigu,karena tidak memberikan path lengkap ke domain. Jadi, satu-satunya dapat menggunakan PQDN di dalam konteks sebuah domain induk tertentu,yang mutlak nama domain dikenal. Kita kemudian dapat menemukan FQDN dari sebuah nama domain tertentu-sebagian denganmenambahkan nama parsial ke nama absolut dari domain induk. Sebagai contoh, jika kita memiliki PQDN "Z" dalam konteks FQDN "yx", kita tahu FQDN untuk "Z" adalah "Zyx"

Mengapa repot-repot dengan ini? Jawabannya adalah kenyamanan. Administrator untuk domain bisa menggunakan nama relatif sebagai tangan pendek untuk merujuk ke perangkat atau subdomain tanpa harus mengulang seluruh nama lengkap. Misalnya, Anda bertanggung jawab atas departemen ilmu komputer di Universitas Widgetopia. Nama domain departemen secara keseluruhan adalah "cs.widgetopia.edu." Dan host individual Anda mengelola dinamai setelah buah.

Dalam DNS file Anda mempertahankan Anda bisa merujuk ke masing-masing perangkat dengan FQDN yang setiap waktu, misalnya, ". Apple.cs.widgetopia.edu", "banana.cs.widgetopia.edu." Dan seterusnya. Tapi lebih mudah untuk memberitahu perangkat lunak "jika Anda melihat nama yang tidak sepenuhnya memenuhi syarat, menganggap itu adalah 'cs.widgetopia.edu' domain". Maka Anda hanya dapat memanggil mesin "apel", "pisang", dll Setiap kali perangkat lunak DNS melihat PQDN seperti "kiwi" ia akan memperlakukannya sebagai "kiwi.cs.widgetopia.edu".


Membedakan FQDNs dan PQDNs dalam DNS


Saya sebutkan di topik sebelumnya bahwa tanda titik untuk domain root null biasanya dihilangkan. Hal ini berlaku dalam bahasa umum, dan ketika pengguna menentukan nama domain dalam sebuah aplikasi, Anda tidak menggunakan tanda titik di browser Web Anda misalnya. Namun, dalam DNS itu sendiri, dot digunakan untuk membedakan secara jelas FQDN dari sebuah PQDN dalam file master DNS. Hal ini memungkinkan kita untuk menggunakan kedua FQDNs dan PQDNs bersama-sama.Dalam contoh di atas, "apel" akan mengacu apple.cs.widgetopia.edu. "," Tetapi "apple.com." Akan mengacu pada nama domain yang memenuhi syarat-sepenuhnya untuk Apple Computer, Inc Anda harus berhati-hati tentang mengawasi titik-titik di sini, karena "apple.com" (tidak ada periode trailing) akan PQDN, dan akan lihat "apple.com.cs.widgetopia.edu.", dan bukan domain dari Apple Computer.

sebuah nama domain yang memenuhi syarat-penuh (FQDN) adalah nama domain yang lengkap yang secara unik mengidentifikasi sebuah node dalam ruang nama DNS dengan memberikan path lengkap dari label dari akar pohon ke simpul tersebut. Hal ini mendefinisikan lokasi absolut dari sebuah domain. Sebaliknya, nama domain yang memenuhi syarat-sebagian (PQDN) hanya menetapkan sebagian dari sebuah nama domain. Ini adalah nama relatif yang memiliki makna hanya dalam konteks tertentu; nama parsial harus diinterpretasikan dalam konteks yang sepenuhnya mengidentifikasi node.
Selengkapnya...